
Malaviya National Institute of Technology
Department of Computer Science & Engineering

Machine Learning Algorithm for Pro-active
Fault Detection in Hadoop Cluster

Winter Internship of:
Agrima Seth

Advisor:
Prof. Mahesh Chandra Govil

December 2014

i

Acknowledgement

I would like to express my sincere gratitude to Prof Mahesh
Chandra Govil for providing me this opportunity to work at

Malaviya National Institute of Technology, Jaipur.
I am deeply indebted to him for his guidance and encouragement.
I would also like to express my gratitude to Mr. Mohit Gokhroo

for his help and support.
A special thanks to Prof. Sangeeta Jadhav, HoD, Information
Technology, Army Institute of Technology, University of Pune,
without whose support, this internship would not have been

possible

Contents

List of Figures iv

1 Introduction 1
1.1 Introduction . 1
1.2 Fault Tolerance . 2

1.2.1 Role of Machine Learning 2
1.2.2 Supervised Learning 2
1.2.3 Unsupervised Learning 3

2 Hadoop Cluster 5
2.1 Hadoop Structure 5
2.2 Hadoop Architecture 6

3 Ganglia Monitoring 9
3.1 Ganglia Monitoring Daemon 9
3.2 Ganglia Meta Daemon 10
3.3 Ganglia PHP Web Front End 10

4 Approach 11
4.1 Feature Extraction 11
4.2 Sparse Model . 12

4.2.1 Learning . 12
4.3 Method of Optimal Directions 13

5 Results 15
5.1 The patterns Observed 15

6 Future Work 19

ii

CONTENTS iii

Bibliography 21

List of Figures

2.1 Multi Node Hadoop Cluster 6

4.1 Sparse Model . 12

5.1 Log of Bytes . 15
5.2 Cpu and Memory Logs 16
5.3 Cpu Usage and memory availability 16
5.4 Cpu Parameters . 16
5.5 Varying Load with input packets 17
5.6 Varying load across nodes 17
5.7 Memory Logs . 17

iv

Introduction 1

1.1 Introduction

In any system or application the reliability is the foremost re-
quirement. In cloud the complexity increases due to its scalable
and heterogeneous architecture, increasing the possibility of more
failures. This needs some fault tolerance measures to provide
reliable service to users in the cloud. Our scope of study is to
predict the possibility of fault in cloud before it actually arrives
or occurs.

The faults maybe of many types depending upon their nature
of occurrence:

1. Permanent Faults.

2. Intermittent Faults.

3. Transient Faults.

In cloud generally, services offered to various users are under
SLA(Service Liable Agreement) which generally specifies QoS
required and penalty clause if service rendered is not as per the
SLA. This requires that the service rendered is not as per the
SLA. This requires that the services offered to any customer be

1

1. Introduction

reliable and delivered in stipulated time. Therefore, fault tolerance
measures become more important in cloud environment.

1.2 Fault Tolerance

Approach to handle faults :

1. Avoidance

2. Tolerance

3. Removal

Cloud requires a good fault management strategy o predict or
detect the fault in advance and mask or mitigate the same in an
efficient manner. The fault prediction is a difficult task because
it is difficult to know in advance that which hardware/software
component will malfunction or develop a permanent or transient
fault. The scope of our study is to design, develop and increment
a fault prediction technique based on Machine Learning.

1.2.1 Role of Machine Learning

Machine learning explores the construction and study of algorithms
that can learn from data. These algorithms operate by building
a model based on inputs and using that to make predictions
or decisions, rather than following only explicitly programmed
instructions. Kadirvel et al. (2013)

1.2.2 Supervised Learning

Supervised learning is the machine learning task of inferring a
function from labeled training data. The training data consist
of a set of training examples. Each example is a pair consisting
of an input object and a desired output value . A supervised
learning algorithm analyzes the training data and produces an
inferred function, which can be used for mapping new examples.
An optimal scenario will allow for the algorithm to correctly
determine the class labels for unseen instances. Mehryar Mohri
and Talwalkar (2012)

2

1.2. Fault Tolerance

1.2.3 Unsupervised Learning

Unsupervised learning is trying to find hidden structure in unla-
beled data. Since the examples given to the learner are unlabeled,
there is no error or reward signal to evaluate a potential solution.
Tucker. (2004)

3

Hadoop Cluster 2

Apache Hadoop is an open source software project that enables
the distributed processing of large data sets across clusters of
commodity servers. It is designed to scale up from a single server to
thousands of machines. Rather than relying on high-end hardware,
the resiliency of these clusters comes from the softwareâĂŹs ability
to detect and handle failures at the application layer. IBM

2.1 Hadoop Structure

The base Apache Hadoop framework is composed of the following
modules:

1. Hadoop Common contains libraries and utilities needed by
other Hadoop modules.

2. Hadoop Distributed File System (HDFS) a distributed file-
system that stores data on commodity machines, providing
very high aggregate bandwidth across the cluster.

3. Hadoop YARN a resource-management platform responsible
for managing compute resources in clusters and using them
for scheduling of users’ applications.

5

2. Hadoop Cluster

4. Hadoop MapReduce a programming model for large scale
data processing.

Figure 2.1: Multi Node Hadoop Cluster

2.2 Hadoop Architecture

Hadoop consists of the Hadoop Common package, which provides
filesystem and OS level abstractions, a MapReduce engine (either
MapReduce/MR1 or YARN/MR2) Chouraria (2012) and the
Hadoop Distributed File System (HDFS). The Hadoop Common
package contains the necessary Java ARchive (JAR) files and
scripts needed to start Hadoop. The package also provides source
code, documentation, and a contribution section that includes
projects from the Hadoop Community.

A small Hadoop cluster includes a single master and multiple
worker nodes. The master node consists of a JobTracker, Task-
Tracker, NameNode and DataNode. A slave or worker node acts
as both a DataNode and TaskTracker, though it is possible to have

6

2.2. Hadoop Architecture

data-only worker nodes and compute-only worker nodes. These
are normally used only in nonstandard applications.

In a larger cluster, the HDFS is managed through a dedicated
NameNode server to host the file system index, and a secondary
NameNode that can generate snapshots of the namenode’s memory
structures, thus preventing file-system corruption and reducing
loss of data. Similarly, a standalone JobTracker server can man-
age job scheduling. In clusters where the Hadoop MapReduce
engine is deployed against an alternate file system, the NameNode,
secondary NameNode, and DataNode architecture of HDFS are
replaced by the file-system-specific equivalents.

7

Ganglia Monitoring 3

Ganglia is a scalable distributed monitoring system for Clusters
and Grids. It is based on a hierarchical design targeted at fed-
erations of clusters. It uses XML for data representation, XDR
for compact, portable data transport, and RRDtool for data stor-
age and visualization. It uses data structures and algorithms to
achieve very low per-node overheads and high concurrency. The
implementation is robust, has been ported to an extensive set
of operating systems and processor architectures. Sorceforgenet
(2000)

3.1 Ganglia Monitoring Daemon

Gmond is a multi-threaded daemon which runs on each cluster
node to be monitored.Gmond has four main responsibilities:

1. Monitor changes in host state.

2. Announce relevant changes.

3. Listen to the state of all other ganglia nodes via a unicast
or multicast channel.

4. Answer requests for an XML description of the cluster state.

9

3. Ganglia Monitoring

The two modes of information transmission are :

1. Unicasting or Multicasting host state in external data rep-
resentation (XDR) format using UDP messages.

2. Sending XML over a TCP connection.

3.2 Ganglia Meta Daemon

Federation in Ganglia is achieved using a tree of point-to-point
connections amongst representative cluster nodes to aggregate the
state of multiple clusters. At each node in the tree, a Ganglia
Meta Daemon (gmetad) periodically:

1. polls a collection of child data sources

2. parses the collected XML

3. saves all numeric, volatile metrics to round-robin databases

4. exports the aggregated XML over a TCP socket to clients.

Data sources are:

1. gmond daemons, representing specific clusters

2. gmetad daemons, representing sets of clusters.

Data sources use source IP addresses for access control and
can be specified using multiple IP addresses for failover. r.

3.3 Ganglia PHP Web Front End

The Ganglia web front-end provides a view of the gathered infor-
mation via real-time dynamic web pages. Most importantly, it
displays Ganglia data in a meaningful way for system administra-
tors and computer users.

The Ganglia web front-end is written in PHP, and uses graphs
generated by gmetad to display history information.

10

Approach 4

For learning of expected behaviour of the system we established
a hadoop cluster consisting of one master and four slave nodes.
Further ganglia monitoring system was installed on these nodes
and jobs were assigned by the master node. The logs obtained
from the rrdtool of ganglia consisted of the feature vectors to
consider. They were then converted to CSV format which was
then subjected to sparse coding for learning in MATLAB.

4.1 Feature Extraction

Machine Learning Classifiers work according to a set of classifiers
given to them. The patterns then produced through this learning
is used for further processing.

The feature set used were:

1. Boot Time

2. Bytes In

3. Bytes Out

4. The Idle time for Cpu

5. Total Disk Usage

11

4. Approach

6. Used Memory of the system

7. Free Memory of the system

8. The total load on the system at an interval of 1,5,15 minutes

We analysed 250 memory logs from the hadoop cluster under
various task deployment. The results of which are mentioned in
Chapter 5.

4.2 Sparse Model

Sparse coding is a class of unsupervised methods for learning sets
of over-complete bases to represent data efficiently.

The aim of sparse coding is to find a set of basis vectors such
that we can represent an input vector X as a linear combination
of these basis vectors:

x =

k∑
i=1

aiφi (4.1)

The sparse coding function on a set of T tasks is defined as
follows:

Figure 4.1: Sparse Model

4.2.1 Learning

Learning a set of basis vectors using sparse coding consists of
performing two separate optimizations, the first being an opti-
mization over coefficients ai for each training example x and the
second an optimization over basis vectors phi across many training
examples at once.

12

4.3. Method of Optimal Directions

Assuming an L1 sparsity penalty, learning a j
i reduces to

solving a L1 regularized least squares problem which is convex
in j

i for which several techniques have been developed (convex
optimization software such as CVX can also be used to perform
L1 regularized least squares). Assuming a differentiable S(.) such
as the log penalty, gradient-based methods such as conjugate
gradient methods can also be used.

4.3 Method of Optimal Directions

Tosic and Frossard (2011) When a signal vector is approximated
using a frame, the number of frame vectors to be used in the
approximation has to be chosen. In the frame design algorithm
presented here the number of frame vectors to be used, m, is
constant for all training vectors and iterations. There are various
algorithms like K-SVD, MOD to achieve optimized machine learn-
ing. We have followed the MOD approach in which fixed frame
sizes are updated at the end of each iterations.

The main steps in of algorithm are as follows:

1. Begin with an initial frame Fo of size N X K, and decide the
number of frame vectors to be used in each approximation,
m. Assign counter variable i=1.

2. Approximate each training vector, XI, using a vector selec-
tion algorithm: using

where wl(j) is the coefficient corresponding to vector fj. Find
the residuals.

3. Given the approximations and residuals, adjust the frame
vectors Fi.

4. Find the new approximations, and calculate the new resid-
uals. If (stop-criterion = FALSE) + i = i + 1, go to step 3.
Otherwise stop

13

Results 5

5.1 The patterns Observed

The following patterns were observed when the nodes exhibited
the expected behaviour.

(a) Number of input bytes to the cluster (b) Number of output bytes to the system

Figure 5.1: Log of Bytes

15

5. Results

(a) Free Memory
(b) Cpu Idle Time

Figure 5.2: Cpu and Memory Logs

(a) Cached Memory
(b) Cpu Used

Figure 5.3: Cpu Usage and memory availability

(a) Cpu usage with respect to input output
(b) Cpu Speed

Figure 5.4: Cpu Parameters

16

5.1. The patterns Observed

(a) Input packets (b) Load every 1 minute

Figure 5.5: Varying Load with input packets

(a) Load every 5 min (b) Load every 15 min

Figure 5.6: Varying load across nodes

(a) Buffer Memory (b) Cache Memory

Figure 5.7: Memory Logs

17

Future Work 6

Presently the sparse representations of the input log is available.
This sparsely coded data will be subjected to various classifying
algorithms , which will then be compared on parameters such as :

1. Time

2. Accuracy

to achieve the most optimal solution.
Once Classified the test data can then be categorised and the

necessary actions for fault tolerance can be accordingly initiated.
Thus producing a more robust and tolerant System.

19

Bibliography

Harsh Chouraria. MR2 and YARN Briefly Explained,
2012. URL "http://blog.cloudera.com/blog/2012/10/
mr2-and-yarn-briefly-explained/".

IBM. What is the Hadoop Distributed File System
(HDFS)? URL "http://www-01.ibm.com/software/data/
infosphere/hadoop/hdfs/".

Selvi Kadirvel, Jeffrey Ho, and José A. B. Fortes. Fault man-
agement in map-reduce through early detection of anoma-
lous nodes. In Proceedings of the 10th International Con-
ference on Autonomic Computing (ICAC 13), pages 235–
245, San Jose, CA, 2013. USENIX. ISBN 978-1-931971-
02-7. URL https://www.usenix.org/conference/icac13/
technical-sessions/presentation/kadirvel.

Afshin Rostamizadeh Mehryar Mohri and Ameet Talwalkar. Foun-
dations of Machine Learning. The MIT Press, 2012.

Sorceforgenet. Ganglia Monitoring System, 2000. URL "http:
//ganglia.sourceforge.net/".

I. Tosic and P. Frossard. Dictionary learning. Signal Processing
Magazine, IEEE, 28(2):27–38, March 2011. ISSN 1053-5888.
doi: 10.1109/MSP.2010.939537.

Allen B. Tucker. Computer Science Handbook, Second Edition
(Section VII: Intelligent Systems). Boca Raton, FL: Chapman
& Hall/CRC Press LLC, 2004.

21

"http://blog.cloudera.com/blog/2012/10/mr2-and-yarn-briefly-explained/"
"http://blog.cloudera.com/blog/2012/10/mr2-and-yarn-briefly-explained/"
"http://www-01.ibm.com/software/data/infosphere/hadoop/hdfs/"
"http://www-01.ibm.com/software/data/infosphere/hadoop/hdfs/"
https://www.usenix.org/conference/icac13/technical-sessions/presentation/kadirvel
https://www.usenix.org/conference/icac13/technical-sessions/presentation/kadirvel
"http://ganglia.sourceforge.net/"
"http://ganglia.sourceforge.net/"

	List of Figures
	Introduction
	Introduction
	Fault Tolerance
	Role of Machine Learning
	Supervised Learning
	Unsupervised Learning

	Hadoop Cluster
	Hadoop Structure
	Hadoop Architecture

	Ganglia Monitoring
	Ganglia Monitoring Daemon
	Ganglia Meta Daemon
	Ganglia PHP Web Front End

	Approach
	Feature Extraction
	Sparse Model
	Learning

	Method of Optimal Directions

	Results
	The patterns Observed

	Future Work
	Bibliography

