Anomaly Detection using Machine Learning for
Data Quality Monitoring in the CMS Experiment

Author: Agrima Seth
Supervisors: Gianluca Cerminara (CERN)
Adrian Alan Pol (Universite de Paris-Sud 11)

August 18, 2017

Abstract

Reliable, robust and fast-turnaround monitoring of the quality of the
data is a key asset to deliver high-quality data for physics analysis for any
modern High Energy Physics experiment. The current paradigm of the
quality assessment in the CMS collaboration is based on the scrutiny of
a large number of histograms by detector experts comparing them with
a reference. The project aims at applying recent progress in Machine
Learning techniques to the automation of this process allowing the check
of large volumes of data in real-time and improving the ability to de-
tect unexpected features. A test implementation using an unsupervised
machine learning model focused on the data of one of the CMS muon
detectors has been developed and bench-marked on real and fake data.

1 Introduction

The central feature of the CMS apparatus is a superconducting solenoid of 6m
internal diameter, providing a magnetic field of 3.8T, within the solenoid volume
are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic
calorimeter, and a brass and scintillator hadron calorimeter, each composed of a
barrel and two endcap sections. Forward calorimeters extend the pseudorapidity
coverage provided by the barrel and endcap detectors.

Muons are measured in the pseudorapidity range |n| < 2.4, with detection
planes made using three technologies: drift tubes (DT), cathode strip chambers,
and resistive plate chambers [1]. A more detailed description of the CMS detec-
tor, together with a definition of the coordinate system used and the relevant
kinematic variables, can be found in [2].

In our project we are concentrating on analysing the occupancy of the drift
tube chambers, i.e. number of counts of electronic signal per read out channel,
developing an algorithm which could identify chambers manifesting anomalous
behaviours. For this we delved into unsupervised machine learning models which
can learn hidden correlations in data and spot the anomalous chambers.

1.1 Data Collection

The data used in input to the algorithm are the distribution of the number of
hits per channel in each DT chamber as populated by the current Data Quality
Monitoring (DQM) infrastructure and served by a web application An example
can be seen in Fig 1.

SLa: Lt |

| 1
L2 | i 1I I i
" L
staiLs III 1 I II 1
1 L

II ' 1
SL1:13 I I I L
sz 1 1 i r
| N 1
10 20 30 40 50 60
Figure 1: The plot shows the number of electronic hits read by each cell (z azis) of

the 12 layers (y azis) composing a DT chamber.

Only data classified as “usable for physics” and acquired during the 2016
LHC run has been used for training and testing. The dataset collected was
composed of 10k datapoints. These were then filtered to remove datapoints
corresponding to the outermost chambers (station 4) being the most difficult
to model due to radiation background. Further, this dataset was split into
two subsets A and B with A containing chambers with no or only one faulty
layer and B containing also chambers with more than 1 faulty layer and known
anomalies (more details are discussed in the further sections).

2 Data Pre-processing

2.1 Data Segregation

Once sufficient data were collected; it was transformed into a matrix where each
chamber was an observation with 15 features to describe it (i.e. n x 15 matrix).
The data points were further segregated into three subsets:

e Dataset A (size = 5990, training: 80%, testing: 20 %): it consists of
only good chambers from the the collected data; they were labelled using
algorithm in [3].

e Dataset B (size = 4000, testing: 100%): it consists of a mix of good
chambers and known anomalous chambers. This majorly consisted of
data which was rejected by algorithm in [3].

e Dataset C (size = 10, testing: 100%): this was artificially created for
further evaluation discussed in Section 3.5.

2.2 Data Normalizations

The data corresponding to each chamber were annotated with the correspond-
ing run number assigned by the CMS data acquisition system. Each run has a
different length corresponding to different integration times for the input distri-
butions.

Ensuring standardised feature values implicitly weights all features equally in
their representation; hence it is essential to normalize data. Therefore, the data
was grouped by run number and then the occupancy values were normalized.
The following normalization techniques were used for comparison:

e Normalization by Integration Time: in this approach data from each run
was normalized by the integration interval of the occupancy data of the
run.

STATION 1 STATION 3

[Wheel_number]

STATION 2 .

-
020 E

u
. %

2 1
[Wheel_number]

[Wheel_number]

STATION 4

181

—_

2
[Wheel_number]

Figure 2: Distribution of time normalized occupancy per wheel for each station for

three runs.

Since this approach did not show significant reduction of variance in the
data we opted for other normalization techniques.

e Min-Max Normalization: in this approach, the data is scaled to a fixed

range - 0 to 1.
Xnorm = XX_% where X is the occupancy of the layer under consid-

eration, X,,;, and
the given run respectively.

o
Xmaz are the maximum and minimum occupancy for

10 STATION 1 STATION 3
= 007
09 == - — _ 5
+ i
os ¥ ooer I i i ! }
: i
o7 0os H :] |)
06 :
os 004 El
04 ==
— = B :
o3 - i ' 4
E —_— i H
02 == oo . o S
o 2 1 o 1 2 ool

[Wheel_number]

STATION 2

=5

5

10

os

0s

04

02

oo

[Wheel_number]

STATION 4

o 1 2
[Wheel_number]

Figure 3: Distribution of min-max normalized occupancy per wheel for each station
for three runs.

30

e Robust Normalization: this scaler removes the median and scales the data
according to the quantile range, ensuring that outliers do not influence
the sample mean/variance in a negative way. So we decided to test its
performance on our data.

Xnorm =

X-Q1
Q4i-Q1

Q
where Q1 and Q4 are the minimum and maximum quartile for the given
run respectively.

25

20

1s

10

0.0

os

STATION 1
&= 3
- =

- 3
2 1 o 1 2

[Wheel_number]

02 STATION 2

01 - X

= E3
— '

01 = ¥

oz e ==

<3 =

o4 -2 1 o 1 2

[Wheel_number]

STATION 3
-030
-032 4
—0.34 £ £ + + —_
J— N 1
036 f - = -+
] i
b e | |
|t E] E Q]
-]
a2 | 4 .]
.
-0.44
2 1 [1 2
[Wheel_number]
STATION &4
25
20 -
i i i
15 e i - i !
| | i i i
i i
10 ! i
0s
00
H]
o5 — _ — - ==
-10

Wheel number]

Figure 4: Distribution of robust normalized occupancy per wheel for each station for

three runs.

For the first autoencoder architecture we decided to proceed with min-max
normalization strategy.

3 Autoencoder Model

An autoencoder is an artificial neural network used for unsupervised learning
of efficient codings. The aim of an autoencoder is to learn a representation
(encoding) for a set of data [4]. The output layer then tries to reconstruct the
input from the learnt representation. Based on the mean square of the recon-
structed output and the input; a decision is taken on classifying the chamber as
anomalous.

3.1 Terms used

e Topology: position of chamber is defined by wheel number, section number
and station number.

e Layer: each chamber is made of 12 layers.

3.2 Feature Selection
There was a comparison between two sets of features:
e Topology and Mean occupancy per layer;

e Topology and Median occupancy per layer.

3.3 Activation Function

In an autoencoder’s encoder and decoder part the programmer can use different
activation function. We have used Relu activation in both the parts.

h = max(0,a) where a = Wz + b because of its efficient gradient propagation
i.e. no vanishing or exploding gradient problems, scale invariance and sparse
representations.

3.4 Architecture

For our project we created the following autoencoder architecture:
e Input layer with encoder.

e Single hidden layer with dimensionality 5 and 3 were benchmarked for
performance based on the results dimensionality of 5 was chosen for the
first iteration of the model; since we were working with a 15 dimensional
feature space we did not opt for multiple hidden layers as they would have
increased model complexity.

e Output layer with decoder.

3.5 Autoencoder training, testing and evaluation

e For training the autoencoder Dataset A (see Section 2.1) was used. It
includes 5990 datapoints and it was split in 80-20 proportion: 80% was
used to train the autoencoder and validated with the remaining 20%.

e Once the autoencoder architecture was chosen we tested it with dataset
B (see Section 2.1). It consisted of 4000 data points which had a mix of
good and known anomalous data-points.

e We created a dataset C containing synthetic anomalous data with anoma-
lies which we were aiming to be captured by our model and would be
difficult to spot by the human expert. The autoencoder was evaluated
using this dataset.

4 Results

The plots below show the distribution of mean squared error between input
and reconstructed values for the two feature sets in section 3.2. Topology and
Median occupancy per layer are a better distinguishing feature than Topology
and Mean occupancy per layer. It can be inferred from Fig 5 that there is a
visible separation between good chambers and the anomalous chambers.

103, T T T

[Dataset B
[Dataset A

[Dataset C

10°

10!

Number of Chambers

100

0
0.00 0.05 0.10 0.15 0.20 0.25
Mean Square Errror (input,reconstructed value)

Figure 5: Distribution of Mean Squared Error between input and reconstructed values
with topology and Median per layer as features.

103, : . . ‘

Dataset B
Dataset A
Dataset C

102

10!

Number of Chambers

10°

0
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Mean Square Errror (input,reconstructed value)

Figure 6: Distribution of Mean Squared Error between input and reconstructed values
with topology and Mean per layer as features.

Example of an anomalous and non-anomalous chamber spotted by the au-
toencoder is show below:

SL3: L4

SL3: L3

SL3: L2

SL3: L1

SL2: L4

SL2: L3

SLz2: L2

SL2: L1

SL1: L4
SL1:L3
SL1: L2
SL1: L1

0

1 30 40 50 60
Figure 7: Example of chamber showing an anomalous channel occupancy and success-

fully identified by the autoencoder.

SL3: L4
SL3:L3
SL3: L2
SL3: L1
SL2:L4
SL2:L3
Sl2:L2
SL2: L1
SL1:L4
SL1:L3
SL1:L2
SL1: L1

0

Figure 8: Example of chamber showing a non-anomalous channel occupancy and suc-
cessfully identified by the autoencoder.

5 Outlook

The first version of the autoencoder, prior to any optimization of its architecture
demonstrated to be a promising technique for anomaly detection in Data Quality
Monitoring applications. Further development would require the optimization of
the autoencoder architecture and enrichment of the feature set. Also, the correct
normalization of the data demonstrated to be pivotal for the performance of the
algorithm and other strategies, including information on the data acquisition
conditions could be exploited.

References

[1] S. Chatrchyan et al. [CMS Collaboration]|, “Performance of CMS muon re-
construction in pp collision events at /s = 7 TeV,” JINST 7 (2012) P10002
doi:10.1088/1748-0221/7/10/P10002 [arXiv:1206.4071 [physics.ins-det]].

[2] S. Chatrchyan et al. [CMS Collaboration], “The CMS experiment at the
CERN LHC,” JINST 3 (2008) S08004 doi:10.1088/1748-0221/3/08/S08004.

[3] https://github.com/AdrianAlan/DT-Digi-Occupancy/tree/master/
notebooks/drift_tubes_digi_occupancy.ipynb

[4] Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. ?Deep learning.”
An MIT Press book. (2015) (Pages 500 -502).

